Главное меню
Мы солидарны с Украиной. Узнайте здесь, как можно поддержать Украину.

Ответ

Обратите внимание: данное сообщение не будет отображаться, пока модератор не одобрит его.
Ограничения: максимум вложений в сообщении — 3 (3 осталось), максимальный размер всех файлов — 300 КБ, максимальный размер одного файла — 100 КБ
Снимите пометку с вложений, которые необходимо удалить
Перетащите файлы сюда или используйте кнопку для добавления файлов
Вложения и другие параметры
Проверка:
Оставьте это поле пустым:
Наберите символы, которые изображены на картинке
Прослушать / Запросить другое изображение

Наберите символы, которые изображены на картинке:

√36:
ALT+S — отправить
ALT+P — предварительный просмотр

Сообщения в этой теме

Автор Тайльнемер
 - апреля 18, 2008, 05:08
А какая разница в употреблении между 'computador', 'computadora' и 'ordenador'?
Автор Karakurt
 - апреля 18, 2008, 04:21
A Spanish teacher was explaining to her class that in Spanish, unlike English, nouns are designated as either masculine or feminine.
- "House" for instance, is feminine: "la casa". "Pencil", however, is masculine: "el lapiz."
A student asked what gender is 'computer? Instead of giving the answer, the teacher split the class into two groups, male and female, and asked them to decide for themselves whether "computer" should be a masculine or a feminine noun. Each group was asked to give four reasons for its recommendation.
The men's group decided that "computer" should definitely be of the feminine gender because:
1. No one but their creator understands their internal logic;
2. The native language they use to communicate with other computers is incomprehensible to everyone else;
3. Even the smallest mistakes are stored in long term memory for possible later retrieval;
4. As soon as you make a commitment to one, you find yourself spending half your paycheck on accessories for it. The women's group, however, concluded that computers should be Masculine ("el computador"), because:
1. In order to do anything with them, you have to turn them on;
2. They have a lot of data but still can't think for themselves;
3. They are supposed to help you solve problems, but half the time they ARE the problem; and
4. As soon as you commit to one, you realize that if you had waited a little longer, you could have gotten a better model.
:)